THE MULTIMODAL LEARNING AS A STRATEGY FOR CHEMISTRY REPRESENTATIONS CONVERSION: THE PHENOMENON TO THE CHART

DOI: 10.48127/gu-nse/12.9.20b

Author's Information
Author Institutional affilation - Country Author's Email Author's ORCID

Dirceu Donizetti Dias de Souza
Maria Fernanda Moreira
Agnaldo Arroio

University of São Paulo - Brazil
University of São Paulo - Brazil
University of Sao Paulo - Brazil

baumcima@yahoo.com.br
maria.fernanda.moreira@usp.br
agnaldoarroio@yahoo.com

n/a
0000-0001-7835-1394
0000-0001-9242-5337


Volume/Issue :
Volume 9
,
Issue 3


Article type :

Original article


Page No :

20-31


Abstract :

Go through multiple ways of representation constitutes an essential skill to recognize, understand and explain numerous phenomena on the natural sciences and simultaneously relating them to the social and technological aspects that permeate the contemporary society. This integration of meanings becomes particularly relevant when the forms of representation are Cartesian systems, which add, among others, opportunities to build inferences and predictions during its production or reading. The learning that focuses the movement between these multiple forms of representation is not innate and dependent on teaching strategies that provide and encourage this practice. Learning strategies that consider aspects that combine multimodal oral narratives, texts and numbers, visual and audiovisual language are powerful tools that are available to be inserted into instructions in chemistry classrooms. These strategies allow the teacher to establish the initial skills and their evolution throughout the process regarding the ability of students to construct graphs representing the phenomena studied in the conceptual and analytical perspective. In this work are presented and discussed the results of evolution in the form of representation of Cartesian graphs for high school students before and during the process of multimodal learning. At the beginning of the process the students build their charts showing only a superficial view of the subject, merely just plot the data between two axes. Throughout the process students moves from a practical copyist to an explicit vision essential to a practice in which the relationships and conceptual analytical view about the phenomenon are consid-ered.


Keywords :

chemistry, graphs, multimodal learning


References :

Anderson, R. F., & Helstrup, T. (1993). Visual Discovery in mind and on paper. Memory and Cognition, 21 (3), 283–293.
Bastide, F. (1990). The iconography of scientific texts: Principles of analysis. En Lynch, M. & Woolgar, S. (Eds.), Representation in Scientific Practice. Cambridge, MA: MIT Press.
Berg, C. A., & Smith, P. (1994). Assessing Students’ abilities to construct and interpret line graphs: disparities between multiple – choice and free – response instruments. Science Education, 78 (6), 527–554.
Camargo Filho, P. S., Laburu, C. E., & Barros, M. A. (2011). Dificuldades Semióticas na Construção de Gráficos Cartesianos em Cinemática. Caderno Brasileiro de Ensino de Física, 28 (3), 546–563.
De Vries, E., & Lowe, R. K. (2010). Graphicacy: What does the learner bring to a graphic? Paper presented at the EARLI SIG 2 Conference in Comprehension of Text and Graphics meeting, Tübingen, Germany.
Duval, R. (2009). Semiósis e Pensamento Humano: Registros semióticos e aprendizagens in-telectuais. São Paulo, São Paulo, Editora Livraria da Física.
Gabel, D. (1998). The complexity of chemistry and its implications for teaching. In B. J. Fra-ser & K. G. Tobin (Eds.), International handbook of science education London: Kluwer Academic.
Gabel, D. (1999). Improving teaching and learning through chemistry education research: A look to the future. Journal of Chemical Education, 76 (4), 548–554.
García García, J. J., & Perales Palacios, F. J. (2007). Comprenden los estudiantes las represen-taciones gráficas cartesianas presentadas en los textos?. Enseñanza de las Ciencias, 25,107–132.
Gilbert, J. K., & Treagust, D. (2009). Multiple Representations in Chemical Education. Dordrecht: Springer.
Hinton, M. E., & Nakhleh, M. B. (1999). Students’ microscopic, macroscopic, and symbolic representations of chemical reactions. The Chemical Educator, 4 (4), 1–29.
Jewitt, C., Kress, G., Ogborn, J. O. N., & Tsatsarelis, C. (2001). Exploring Learning Through Visual, Actional and Linguistic Communication : the multimodal environment of a sci-ence classroom. Educational Review, 53, 5–18.
Johnstone, A. H. (1991). Why is science difficult to learn? Things are seldom what they seem. Journal of Computer Assisted Learning, 7, 75–83.
Johnstone, A. H. (1993). The development of chemistry teaching: A changing response to a changing demand. Journal of Chemical Education, 70 (9), 701–705.
Johnstone, A. H. (2000). Teaching of chemistry: Logical or psychological? Chemical Educa-tion: Research and Practice in Europe, 1 (1), 9–15.
Kintsch, W. (1998). Comprehension: a paradigm for cognition. Nova York: Cambridge Uni-versity Press.
Klein, P. D., & Kirkpatrick, L. C. (2010). Multimodal literacies in Science: Currency, Coher-ence and Focus. Research in Science Education, 1 (40), 87–92.
Knain, E. (2006). Achieving Science Literacy Through Transformation of Multimodal Textual Resources. Sciences Education, 90 (4), 656–659.
Kozma, R. B., Russell, J. (1997). Multimedia and understanding: Expert and novice responses to different representations of chemical phenomena. Journal of Research in Science Teaching, 34 (9), 949–968.
Lemke, J. L. (1998). Multiplying meaning: Visual and verbal semiotics in scientific text. In: Martin, J. R. & Veel, R. (Eds), Reading Sciences.
Lemke, J. L. (2006). Investigar para el futuro de la educación científica: Nuevas formas de aprender, nuevas formas de vivir. Investigación Didática, 24 (1), 5–12.
León, J. A. (1999). Mejorando la comprensión y el aprendizaje del discurso escrito: estrate-gias del lector y estilos de escritura. In: Pozo, J. I. & Monereo, C. El aprendizaje es-tratégico. Madrid. Santillana.
Mayer, R. E. (1997). Multimedia learning: Are we asking the right questions. Educational Psychologist, 32, 1-19.
Nass, D. P. (2008). Gráficos como representações visuais relevantes no processo ensino- ap-rendizagem: uma análise de livros didáticos de Química do Ensino Médio. 2008. Dissertação (Mestrado em Química Analítica) - Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, 2008. Available in: . Retrie-ved in: February, 2012.
Postigo, Y., & Pozo, J. I. (1999). Hacia una nueva alfabetización: el aprendizaje de informa-ción grafica. In J. I. Pozo & C. Monereo (Coords.), El aprendizaje estratégico: enseñar a aprender desde el currículo. Madrid: Santillana /Aula XXI.
Postigo, Y., & Pozo, J. I. (2000). Cuando una grafica vale más que 1.000 dados: la interpreta-ción de graficas por alumnos adolescentes. Infancia y Aprendizage, 90, 89–110.
Prain, V., & Waldrip, B. (2006). An Exploratory Study o f Teachers’ Use of Multi-modal rep-resentations of Concepts in Primary Science. International Journal of Science Educa-tion, 28 (15), 1843–1866.
Schnotz, W., & Bannert, M. (2003). Construction and interference in learning from multiple representations. Learning and Instruction, 13 (2), 141–156.
Tan, K. C. D., Goh, N. K., Chia, L. S., & Treagust, D. F. (2009). Linking the macroscopic, sub-microscopic and symbolic levels: The case of inorganic qualitative analysis. In J. K. Gilbert; D. Treagust (Eds), Multiple Representations in Chemical Education, Models and Modeling in Science Education. Netherlands: Springer.
Treagust, D. F., Chittleborough, G., & Mamiala, T. (2003). The role of submicroscopic and symbolic representations in chemical explanations. International Journal of Science Education, 25 (11), 1353–1368.
Vygotsky, L. S. (2001). A Construção do Pensamento e Linguagem. São Paulo: Martins Fontes.



Cite as :

Dirceu Donizetti Dias de Souza, Moreira M. F., & Arroio A. (2012). The multimodal learning as a strategy for chemistry representations conversion: The phenomenon to the chart. Gamtamokslinis ugdymas / Natural Science Education, 9(3), 20-31. https://doi.org/10.48127/gu-nse/12.9.20b